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Chorex: Restartable, Language-Integrated Choreographies

1 Introduction

Choreographic programming adds a layer of organization to concurrent or distributed
systems. A choreographic language introduces a domain-specific notation for chore-
ographies—programs that describe the interactions among actors in a system—and it
projects each choreography to a set of local programs, one for each actor [8, 40, 41].

Actor 1

Actor n

Choreography
…Projection

A choreography makes a global view of the system explicit as code, and is deeply
connected to the actual behavior of actors. By contrast, in traditional distributed
systems, the global view is merely a design document or a sketch on a whiteboard,
and it is up to programmers to ensure that individual actors work together to realize
the global protocol design. Actors can easily fall out of sync, as only end-to-end testing
holds them together.
With choreographies, classes of communication errors become unrepresentable.

Sends and receives cannot be mismatched because they are paired by design in a
combined form: send ⇝ recv. Deadlocks cannot occur because lexical scope rules
them out. For example, our language Chorex reports a compile-time error for the
would-be deadlock below because the variable A.val is used before it is bound:

...
defchor [A, B, C] do # choreography for 3 actors

def run() do
A.val ~> B.val
B.val ~> C.val
C.val ~> A.val

end

ERROR: undefined variable "val"
|
| A.val ~> B.val
| ^^^
|
+- deadlock.exs:6 A.run/1

Languages that support choreographic programming are on the rise and quickly
growing to support full-featured programs. Choral [29] brings choreographies to Java
and recently added interoperability with legacy code to enable an Internet Relay Chat
(IRC) implementation [39]. MultiChor, for Haskell, introduces a dynamic approach
to projection that has been ported to Rust and TypeScript [4]. These and other
implementations (surveyed in Section 6) have taken great strides toward practical
choreographic programming. However, choreographic languages fail to address all of
the seminal eight fallacies of distributed computing [55, 57]: (1) the network is reliable,
(2) latency is zero, (3) bandwidth is infinite, (4) the network is secure, (5) topology
doesn’t change, (6) there is one administrator, (7) transport cost is zero, and (8) the
network is homogeneous. Languages meant to support distributed programming must
be robust against all of these critical issues.
In this paper, we present a language, Chorex, that addresses fallacy (5), topology

doesn’t change, through a novel projection strategy and runtime monitoring. Chorex
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(a) Autocomplete in an actor lists functions
required by the choreography.

(b) Missing knowledge-of-choice annotations lead to a
static error during projection.

Figure 1 Examples of language integration in Chorex.

introduces try/rescue blocks to specify recovery behavior. During projection, every try
block introduces code to checkpoint only the necessary state and to prevent actors
from advancing to an un-recoverable position in the choreography. At runtime, a
supervisor restarts actors as needed, restores checkpoint state, and shares the address
of the new participant via out-of-band messages to other actors (who are, by design,
prepared to receive such messages).
In the following minimal example, Alice crashes due to division by zero. After

restarting, a new Alice is able to exchange messages with Bob:

try do
Alice.f(1 / 0) ~> Bob.y

rescue
Alice.f(1) ~> Bob.y

end
Alice.(2 + 2) ~> Bob.sum
Bob.(sum + sum) ~> Alice.result
Alice.result

Chorex brings choreographic programming to Elixir. The implementation is notable
because it follows the languages as libraries [53] design method to achieve a high
level of integration with the standard Elixir toolchain. Figure 1 presents two benefits
of language integration:

Figure 1a shows that functions required by a choreography appear as suggestions
when a programmer edits an actor module. The pictured suggestion appears in
the context of an actor module named MyAlice that fills the role named :alice from a
choreography named Demo.Chorex (not pictured). There are two required functions:
decrypt and priv_key.
Figure 1b shows a tooltip box with a compile-time error due to missing annota-
tions. This sort of error illustrated in Figure 1b is not detectable in choreographies
implemented as runtime libraries because it requires two passes over the input [4,
47]. Either a bespoke compiler or Chorex-style metaprogramming is needed.

Both affordances are IDE-agnostic because they leverage the Elixir language server.
Our IDE of choice happens to be Emacs, but Neovim or VSCode users would see
similar tooltips.
Concretely, the Chorex compiler is an Elixir macro that analyzes source code,

projects the code to actor implementations, and propagates source locations so that
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errors in the output point to useful source locations. Additional features of Chorex
include first-class functions, out-of-ordermessage receives, message transport over TCP,
and shared state across different instantiations of the same choreography. Section 4
covers the implementation in detail.

Outline This paper begins with an example-driven tour of the Chorex language, in-
cluding a TCP socket server and Secure Remote Password protocol (Section 2). These
examples serve a dual purpose as an evaluation of Chorex, illustrating its expressive-
ness on realistic use-cases. Next, the paper presents the design of Chorex (Section 3),
with emphasis on its novel support for restartable actors, and follows with a close
look at how Chorex achieves beneficial language integration through metaprogram-
ming (Section 4), and a performance evaluation of its try/rescue recovery mecha-
nism (Section 5). The paper concludes with a landscape of the rapidly-evolving area
of choreographic programming (Section 6) and a discussion of next steps (Section 7).

Data Availability Statement Chorex is open source and available on GitHub and
the Elixir/Erlang package manager Hex. Links omitted for double-blind review. We
plan to submit an artifact that contains the latest release of Chorex and code that
substantiates all examples in this paper.

Notation For readability and to save space, code listings in this paper make two
abuses of Elixir notation. First, they often omit end delimiters, which are required
to close blocks opened by def . . . do and other forms. Second, they omit parentheses
around located variables, writing A.val rather than the preferred A.(val), which cooperates
better with the Elixir autoformatter. Refer to the artifact for runnable Elixir code.

2 Chorex By Example

Chorex is a domain-specific language for choreographic programming in Elixir. This
section illustrates the basics of Chorex through several motivating examples.
Elixir [49, 51] is the chosen target language for several reasons. First, it compiles

to the Beam VM (the Erlang virtual machine), and thus has access to primitives that
support low-latency, distributed, fault-tolerant systems. These primitives have enabled
fast prototyping of choreographic features. Second, Elixir has a large userbase to
engage with in future work. Third, Elixir comes with a hygienic macro system. Thanks
to macros, Chorex is implemented as a library and integrates smoothly with the Elixir
build system, Mix [22], and package manager, Hex [21].

2.1 Socket Server

Our first example is a minimal socket server inspired by Thousand Island [52], a
full-fledged socket server written in Elixir. There are two choreographies involved. A
first choreography, between a Listener actor and an Acceptor actor, initializes a server
that clients can connect to. A second choreography specifies interactions between a

4



Ashton Wiersdorf and Ben Greenman
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Figure 2 Socket server architecture: (1) Listener sends a socket to Acceptor; (2) Acceptor
waits for a TCPClient, then spawns a Handler Choreography; (3) TCPClient and
AppHandler exchange messages; (4) Acceptor listens for a next client.

Client actor and an AppHandler actor. Figure 2 maps out the overall design. Crucially,
the top-level choreography is able to start multiple instances of the inner Handler
Choreography. Every client that connects to the server gets forwarded to a unique
choreography with an AppHandler actor.
Located Expressions. First, a note on syntax. A choreography cannot store state

because it does not have a first-class representation at runtime. All state, such as
program variables, must be stored on actors. The dot notation Actor.x reads from a
variable x whose value is stored at the actor named Actor. A located expression such as
Actor.(2 + 2) is to run on the named actor. Arbitrary Elixir expressions can appear after a
dot, such as function calls.
Choreography Structure. The Chorex form defchor introduces a choreography. Each

choreography must have a run function, which serves as an entry point. To run a chore-
ography, callers invoke the helper function Chorex.start, which manages configuration
and calls the matching run function. Choreographies may include additional functions,
introduced by the def keyword.

Top-Level, Listener Choreography The listener choreography for our TCP server ex-
pects configuration data as input and immediately calls a helper function (located on
the Listener actor) to acquire a socket connection. The Listener sends this socket to
an Acceptor actor. At this point, the Listener’s work is done. The choreography then
enters a loop in which the Acceptor awaits and manages incoming connections.
defmodule Tcp.ListenerChor do

import Chorex

defchor [Listener, Acceptor] do
def run(Listener.config) do

Listener.get_listener_socket(config) ~> Acceptor.{:ok, socket}
loop(Acceptor.socket)
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def loop(Acceptor.listen_socket) do
Acceptor.accept_and_handle_connection(listen_socket)
loop(Acceptor.listen_socket)

end

The following module is an implementation of the Acceptor actor. It imports the
choreography above and, on the same line, specifies the actor role that it plans to
implement (:acceptor). Inside the helper function, this Acceptor calls Chorex.start to invoke
a choreography named Tcp.HandlerChor. The other arguments to Chorex.start are a map
from actor roles to module names and a list of arguments to the HandlerChor’s run
function. In this case, the only argument is the socket:
defmodule Tcp.AcceptorImpl do

use Tcp.ListenerChor.Chorex, :acceptor

@impl true
def accept_and_handle_connection(listen_socket) do

{:ok, socket} = :gen_tcp.accept(listen_socket)
Chorex.start(

Tcp.HandlerChor.Chorex,
%{Handler => Tcp.HandlerImpl, TcpClient => Tcp.ClientImpl},
[socket]

)
end

If anything goes wrong at runtime, the Acceptor will exit cleanly and bring the Listener
down as well. This exit behavior comes out of the box with Chorex.

Inner, Handler Choreography The second choreography describes an interactive loop.
First, the AppHandler actor initializes a dictionary to track the total bytes sent by
the client. Inside the loop, the Client sends a message to the AppHandler and the
AppHandler updates its state, decides whether to continue, and sends a reply:
defmodule Tcp.HandlerChor do

import Chorex

defchor [AppHandler, TcpClient] do
def run(TcpClient.sock) do

loop(AppHandler.(%{byte_count: 0}), TcpClient.sock)

def loop(AppHandler.state, TcpClient.sock) do
TcpClient.read(sock) ~> AppHandler.msg
with AppHandler.{resp, st2} <- AppHandler.run(msg, state) do

AppHandler.fmt_reply(resp) ~> TcpClient.resp
TcpClient.send_over_socket(sock, resp)
if AppHandler.continue?(resp, st2) do

loop(AppHandler.st2, TcpClient.sock)
else

TcpClient.shutdown(sock)
AppHandler.ack_shutdown()

end

This choreography uses a Chorex if expression. In it, one actor (AppHandler) makes
a choice that determines the future of the conversation. The other actor thus needs
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knowledge of choice to decide which branch to take in its own code. By default, Chorex
sends a message to every other actor in a choreography whenever an if branch is
taken. To restrict to a subset of actors, programmers can insert a notify: annotation.
Chorex statically rejects notify annotations that list too few participants (Section 3.1).

2.2 Secure Remote Password

Secure Remote Password (SRP) [58] is an authentication method based on zero-
knowledge-proofs [30]. Our Chorex implementation drives a simple command-line
application that lets one user register a password and then serves login requests:
iex(1)> ZkpLogin.register_srp()

[New User SRP] username: alice
[New User SRP] password: bob
Server responds {:registered, "alice"}
Client responds :registered
:ok

iex(2)> ZkpLogin.login_srp()
[Login] username: alice
[Login] password: notbob
Server responds {:fail, :reject_client_digest}
Client responds {:fail, :server_rejected_digest}

The choreography has two run functions corresponding to the registration and login
phases. Chorex distinguishes these functions by their arity. The registration function
expects a username and password located at the client, and a :register token located at
the server. The login function expects no input at either actor. The code below shows
the registration run function:
defmodule Zkp.SrpChor do

import Chorex

defchor [SrpServer, SrpClient] do
def run(SrpClient.{uname, pwd}, SrpServer.(:register)) do # register

SrpServer.get_params() ~> SrpClient.{salt, g, n}
with SrpClient.v <- SrpClient.gen_token(uname,pwd,salt,g,n) do

SrpClient.{uname, salt, v} ~> SrpServer.{uname, salt, v}
if SrpServer.register(uname, salt, v) do

SrpServer.{:registered, uname}
SrpClient.(:registered)

else
SrpServer.({:error, :no_registration, uname})
SrpClient.({:error, :no_registration})

def run() do ... # login
end

An important property of SRP is that secret information, such as the password on
the client or the the value b on the server, never get transmitted to the other. This
property is straightforward to verify by inspecting the choreography and confirming
that secret located values, e.g. SrpClient.pwd, are not sent to another actor. In a traditional
distributed SRP implementation, such as srp-elixir [46], this sort of property is harder
to establish because communication logic is split across multiple files.
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1. Client sends user_id to server.
2. Server finds user’s salt s and auth key v, uses

constants g, N to compute k = hash(g, N),
generates random secret b, computes B =
kv + g b, and sends g, N , s, B to client.

3. Client generates random secret a and com-
putes several values, including a session key:
A = ga

k = hash(g, N)
u = hash(A, B)
K = (B − kg x)a+ux

M1 = hash(A, B, K)
Client sends A, M1 to server.

4. Server computes K = (Avu)b and checks
that hash(A, B, K) = M1. Server sends M2 =
hash(A, M1, K) to confirm session key.

Client Server

user_id

g, N, s, B
A, M1

M2

1

3

2

4

Session key 
established

Session key 
established
✓✓

Figure 3 Secure Remote Password login protocol to find key K.

During the login phase of SRP, there are several rounds of communication that
take place between server and client to establish a session key K. The choreographic
function that implements these exchanges is roughly twice as long as the registration
function yet uses similar language features (with, ~>, if), so we defer it to the artifact.
It is enough to say that comparing the choreography against a high-level algorithm
description, shown in Figure 3, is straightforward. For example, the login choreography
(in artifact) has exactly four communication terms (~>), matching the figure.

2.3 Discrete Logarithm

As a third example, we have implemented a zero-knowledge proof protocol to convince
a verifier that the prover knows the logarithm of a number in a finite field. The
choreography is approximately 70 lines long and is included in the artifact.
The choreography uses two closely-knit helper functions: one that loops through

several rounds of challenge and verification, and another that handles the logic of a
single round. Compiling these functions to a core language that supports restarts was
a key milestone in the development of Chorex.

2.4 More Examples: Higher-Order, Out-of-Order, Persistent State

Chorex has several other features inspired by prior work on choreographies. For one, it
supports first-class choreographic functions. The program in Figure 4, adapted from the
Pirouette paper [32], has a run function that executes either a one-buyer or two-buyer
bookseller scenario by passing one function to another function. Both scenarios are
inspired by the session types literature [7, 33].
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defchor [Buyer, Contributor, Seller] do
def run(Buyer.include_contributions?) do

if Buyer.include_contributions? do
bookseller(@two_party/1)

else
bookseller(@one_party/1)

def bookseller(f) do
Buyer.get_book_title() ~> Seller.the_book
with Buyer.decision <- f.(Seller.get_price("book:" <> the_book)) do

if Buyer.decision do
Buyer.get_address() ~> Seller.the_address
Seller.get_delivery_date(the_book, the_address) ~> Buyer.d_date
Buyer.d_date

else
Buyer.nil

def one_party(Seller.the_price) do
Seller.the_price ~> Buyer.p
Buyer.(p < get_budget())

def two_party(Seller.the_price) do
Seller.the_price ~> Buyer.p
Seller.the_price ~> Contributor.p
Contributor.compute_contrib(p) ~> Buyer.contrib
Buyer.(p - contrib < get_budget())

end

Figure 4 Higher-order choreographic function for two classic bookseller scenarios.

References to functions, namely @two_party/1 and @one_party/1, are prefixed with an
@ sign so that Chorex can increment the arity to account for an implicit argument
representing the choreography state (Section 4.2), during compilation. This prefix is
a slight twist on Elixir’s standard &-sign prefix for function references. The suffix /1 is
standard for Elixir; it describes the arity of the function.

A second important feature is out-of-order message receives. In the following example,
the two messages sent to MainServer arrive when they are ready. The first send does
not block and the second, being data-independent, can run immediately:
defchor [KeyServer, MainServer, ContentServer, Client] do

def run() do
ContentServer.getText() ~> MainServer.txt # may arrive 2nd
KeyServer.getKey() ~> MainServer.key # may arrive 1st
...

This feature is inspired by the Ozone language [42]. However, unlike the calculus that
Ozone is based on (O3), Chorex will not reorder two sends from the same actor, nor
will it move expressions in or out of an if branch.

A third feature is persistent state across instances of a choreography. For example,
one Seller can manage a bookstore that several buyers interact with concurrently.
Similar to prior work on objects with multiple owners [15, 29], the Chorex approach
is to decouple the state from the choreography itself, similar to using a database.
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3 Elements of Chorex

Chorex is designed to advance research on choreographic programming by integrating
with the rich Elixir/Erlang ecosystem for distributed systems. Key principles of the
language design include the following:

Maintain a smooth Elixir workflow by implementing the choreography language
and projection through metaprogramming.
Manage actors using a standard Elixir supervision tree.
Provide custom mailboxes and control stacks for actors to handle out-of-order
messages, messages from the supervisor, and recovery.

Furthermore, Chorex draws inspiration from Elixir syntax and programming idioms,
which has shaped the “look and feel” of the language.

This section explains user-facing aspects of the language design, including how to
write a choreography (Section 3.1), how to implement an actor (Section 3.2), and the
framework for monitoring and supervision (Section 3.3).

3.1 The Choreography Language

To write a Chorex choreography, define a module, import Chorex, and use defchor:
defmodule SampleChor do

import Chorex
defchor [Alice, Bob, Carol] do

...
end

The defchor macro expects two input forms: a list of actor names (CamelCase, to match
the Elixir convention for module names) and a block of code. It contains a sequence
of function definitions (def). One function named run must be included; this function
is the entry point to the choreography. No other definition forms are allowed. Each def
projects to several variant functions, one for each actor. A defchor outputs a standard
Elixir module named Chorex that provides code and an API for actors. Expanded code
thus has the following shape:
defmodule SampleChor do

import Chorex
defmodule Chorex do

...
end

Other modules must refer to this macro-defined module (SampleChor.Chorex), either to
implement an actor or to start the choreography. The module Tcp.AcceptorImpl from Sec-
tion 2.1 illustrates both uses.
Variables in a choreography must be located at an actor, using the syntax Actor.var

(used in this paper) or Actor.(var) (preferred in Chorex, because it cooperates with
Elixir’s mix format tool). This rule includes arguments to standard functions, as in the
following header, which expects a field named arg at the actor Alice and another field,
also named arg, at the actor Bob: def some_function(Alice.arg, Bob.arg) do ...
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There is one exception to the rule that every variable must be located. Function
arguments to a higher-order function are not located (example in Section 2.4).
Elixir encourages the use of overloaded functions that each perform a specific job

rather than functions that do one of several jobs after inspecting their input (via
match, if, etc.). Chorex supports overloaded functions as well. The two run functions
in the SRP choreography (Section 2.2) are one example. Cases in an overloaded
function must have distinct signatures, either through the number of arguments or
the pattern-matching shape of those arguments. Crucially, the case-distinction must
hold after a choreographic function is projected to actor code. This is why the SRP
registration function expects a token :register located on the Server:
defchor [SrpClient, SrpServer] do

def run(SrpClient.{username, password}, SrpServer.(:register)) do ... # register
def run() do ... # login

Without this extra placeholder argument, the projected code for SrpServer would
contain two run functions that both expect zero arguments. Currently, this results in a
Chorex runtime error. Adding static detection is future work.

Sending and Receiving Messages Arrow notation (send⇝ recv) sends a value from
one actor to another. In Chorex, the sender can prepare any located expression.
Variables, function calls, arithmetic, and other expression forms are valid on the left
side of a send. The receiver can use Elixir pattern matching to bind variables:
Alice.{:answer, 42} ~> Bob.{:answer, the_answer}

Conditionals and Knowledge of Choice Chorex repurposes if expressions from Elixir
for choreographic conditionals (with one change: Chorex requires an else branch;
multi-way conditionals are future work). In the following example, Alice is the deciding
actor for this conditional, as the branch hinges on the result computed at Alice. The
projection for Bob inserts a receive to wait for a knowledge of choice message to know
which branch to take:
if Alice.make_decision() do

Alice.yes_branch() ~> Bob.d1
Bob.report(d1)

else
Alice.no_branch() ~> Bob.d2
Bob.report(d2)

end

Unlike prior work (e.g. [32]), an if in Chorex need not appear in tail position.
Chorex does not (yet) infer the actors in a conditional, and thus by default shares

knowledge of choice with every other actor in the choreography. To limit the notified
actors, a programmer can add a notify: annotation:
if Alice.make_decision(),

notify: [Bob, Carol] do ...

When a notify: fails to include all necessary actors, Chorex raises a compile-time
error as it projects code for each actor. Below, Carol is missing a notify:
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defchor [Alice, Bob, Carol] do
def run(Alice.msg) do

if Alice.decrypt(msg, priv_key()), notify: [Bob] do
Bob.notify_success()
Carol.foiled()

else
Bob.notify_failure()
Carol.success()

The error output explains the problem with an accurate line number:
== Compilation error in file bad_branch.ex ==
** (CompileError) bad_branch.ex:3: Branches differ for actor Elixir.Carol; `if' block needs to notify

Error Rescue and Restarts Chorex adapts Elixir’s try/rescue blocks to handle errors that

Run continuation

Actors enter the 
try block

Actors checkpoint 
their state

Run try block

Await all clear

Monitor restarts 
crashed process

Crashed process 
restores state

Actors unwind to 
rescue block

Run rescue block

Figure 5 Chorex try/rescue logic.

may arise in actor code.(Unlike in Elixir,
rescue declares a block and not a match
clause.) If Alice or Bob were to fail in the
following try block, both actors would ex-
ecute the rescue block with the failing ac-
tor restored as a new actor instance with
recovered state:
try do

Alice.dangerous_operation() ~> Bob.x
Bob.success(x)

rescue
Alice.safe_operation() ~> Bob.x
Bob.fallback(x)

end

Figure 5 presents a flowchart descrip-
tion of try/rescue semantics. At the start
of the try block, every actor checkpoints
its state. This checkpoint is used to enter
the rescue block, if needed. During execu-
tion of the try block, a runtime monitor
watches for crashed processes. If all goes
well for an actor, it pauses at the end of the
try/rescue in case another actor crashes. If
a failure occurs, the monitor restarts the
failed actor, sends updates to all other
actors, and unwinds to the checkpointed state.

Actor-Local Variables An actor can bind variables using Elixir’s with notation. For
example, here Alice creates a located variable x: with Alice.x <- compute_value() do ...

Run Results When actors finish executing the main run function, they each send a
value to the mailbox of the calling process. This value defaults to nil.
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3.2 Actor Interface

In order to start a Chorex choreography, driver code must provide modules that
implement each of the actors. Section 2.1 presented an example driver; module
Tcp.AcceptorImpl called Chorex.start with a mapping from actor names to module names.
The AcceptorImpl module also happens to be an implementationmodule, as it implements
the role Acceptor from the top-level TCP choreography:
defmodule Tcp.AcceptorImpl do

use Tcp.ListenerChor.Chorex, :acceptor
...

Whereas the actor modules generated by Chorex handle all the communication
for that actor in a choreography, Actor implementation modules must contain all the
local functions listed in the choreography. For example, the choreography code below,
the first line calls a function get_money() located on the Alice actor, the second line asks
Bob to fetch_apples, and the third line asks Alice to fetch_sugar and bake_pie:
Alice.get_money() ~> Bob.payment
Bob.fetch_apples(payment) ~> Alice.apples
Alice.bake_pie(apples, fetch_sugar())

An implementation for Alice must provide each function in the wishlist, similar to
the outline below.
defmodule AliceImpl do

use DemoChor.Chorex, :alice

def get_money(), do: ...
def fetch_sugar(), do: ...
def bake_pie(apples, sugar), do: ...

end

To guide actor implementation, Chorex gathers the set of local functions for each
actor during projection and creates an interface specification—called a behaviour in
Elixir parlance—that an implementing module must contain. Elixir issues compile-time
errors if an actor implementation does not satisfy the behaviour.
Language Server Integration. Chorex provides guidance to implementation modules

in the form of language server tooltips, illustrated in Figure 1a. These are enabled
through metaprogramming and cooperation with Elixir’s behaviour mechanism. In
particular, the line use DemoChor.Chorex, :alice expands at compile time to code that glues
this implementation module to the choreography’s projected module for Alice.

3.3 Supervision Protocol

Chorex leverages Elixir/Erlang process monitoring to supervise choreographic actors.
In Elixir, when a process A monitors another process B and B exits, process A receives a
message that describes how B terminated (e.g., normal exit vs. crash). Chorex creates
monitoring links to build a supervision tree in the style of Figure 6 every time a
program starts a choreography.
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Calling process

RuntimeSupervisor
(DynamicSupervisor)

Actor1 Actor2 Actor3

RuntimeMonitor
(GenServer)

M
on

ito
rs

Linked

Linked

The process that calls Chorex.start spawns a 
linked RuntimeMonitor process; if either the 
caller or the RuntimeMonitor crash, the other 
will be taken down as well.

1

RuntimeMonitor spawns a linked 
RuntimeSupervisor. This will supervise all the 
actors in the choreography. This way, if 
RuntimeMonitor or RuntimeSupervisor crash, 
all the children will be cleaned up as well.

2

RuntimeMonitor spawns processes for each 
actor under RuntimeSupervisor and monitors 
each one. If an actor crashes, RuntimeMonitor 
will be informed and can attempt restarting it.

3

…

Supervises
Figure 6 Chorex creates one monitor and one supervisor for each choreography.

The supervision tree adds two processes to a choreography, in addition to the
calling process and actor processes: a RuntimeMonitor and a RuntimeSupervisor. The Monitor,
Supervisor, and calling process are linked together such that if any one process crashes,
the entire choreography terminates. The Supervisor’s job is to perform this cleanup
on the actors. The Monitor’s job is to watch for actors that crash, restart them, and
send updates to reconfigure the network.

Technically, the Supervisor implements an Elixir behaviour called DynamicSupervi-
sor [12]. The Monitor implements the so-called GenServer behaviour [13]. Each actor
is a GenServer as well; Section 4 explains the significance of GenServers.

Restarting a Crashed Process When an actor enters a try/rescue block, it creates a
checkpoint that includes the control stack, message inbox, and bindings for local
variables. The actor sends the control stack and variable bindings to the Monitor
process. If a crash occurs, the Monitor spawns a new process, which has no state
initially, and restores the missing pieces. After reinstating an actor process, the Monitor
alerts all other actors that a crash has occurred.
Storing checkpoints in the Monitor is a convenient choice. This data could easily

move to the filesystem, a database, or even another process. The main benefit of the
Monitor is that it is linked to the actors and to the calling process to support clean
exits.

Handling Out-of-Band Recovery Messages Chorex manages its own call stacks and
inboxes instead of relying on Elixir’s mechanisms to enable out-of-band message
receives. When an actor crashes, the Monitor broadcasts a message that the most
recent try block failed along with a token indicating which stack frame the actors
must unwind to. Actors handle this message by unwinding their control stacks and
resetting their environments to the frame that transfers control to the rescue block.

14



Ashton Wiersdorf and Ben Greenman

def run(Bob.(title)) do
  Bob.remark("I want " <> title)
  Bob.(title) ~> Alice.(t)
  Alice.get_price(t) ~> Bob.(price)
  Bob.record(title, price)
  ...
end def handle_continue({:tok1, price}, state) do

  title = state.vars[:title]
  record(title, price)
  ...
end

def handle_continue({:run, title}, state) do
  remark("I want " <> title)
  send(to: Alice, title)

  # Now we need to receive
  state = put_in(state.vars[:title], title)
  make_receive_state(:tok1, state)
end

Choreography

Bob’s projection

Figure 7 Projection splits actor code into a set of callbacks: one per receive.

Can a Restarted Process Miss Messages? Any messages that arrive while an actor is
executing a try block go to its inbox, but not to its checkpointed state, and will be lost
if the actor crashes. This is not, in fact, a danger. The messages that arrive in a try
block must have originated from other actors within the same try block because sends
and receives are matched up and and all actors must complete the try before any one
can continue execution. Forcing actors to wait at the end of a try also ensures that
they are available to unwind if a rescue is needed; without synchronization, an actor
might terminate early.

4 Implementation Highlights

Although Chorex builds on Elixir, its high-level strategy for enabling restarts is ap-
plicable to other choreographic languages. This section discusses key aspects of the
implementation to facilitate adaptation.

Chorex translates choreographies to sets of sets of message-passing functions (Fig-
ure 7). Each function in the choreography projects into several variants, one for
each actor, and each variant is in turn split into several functions (distinguished by
generated tokens) corresponding to receive-separated chunks of the choreography.
Getting these functions to cooperate required a number of significant components:
a tailored message format (Section 4.1), a method of organizing component func-
tions (Section 4.2), and an implementation of the compiler as a metaprogram to
maximize host-language integration (Section 4.3). We conclude this section with
lessons learned (Section 4.4).

4.1 Message Format

There are two categories of messages that a Chorex actor needs to handle: choreogra-
phy messages and control messages. Choreography messages go between actors, and
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originate from the sends and receives in a choreography. Control messages come from
the Chorex runtime; these messages propagate knowledge of choice, notify actors of
crashes and network updates, and synchronize actor execution of try/rescue blocks.
Most messages have a 3-tuple format: MSG = {message_type, civ_token, payload}

The message_type field may have one of five possible values, which determines both
the payload and the tuple shape of the remaining message:

:chorex, for a choreography message. The corresponding payload is a message (any
Elixir value) created by one actor and intended for another actor.
:choice, for knowledge-of-choice. Payload is a Boolean choice value.
:revive, for error recovery. This type of message is a 2-tuple; it does not include a
CIV token. Payload is the new actor state to install.
:recover, for error recovery. This type of message is sent to actors that did not crash,
and asks them to unwind to the nearest rescue point and reset their environments.
Payload represents the new network configuration.
:barrier, for synchronization at try blocks. Indicates that all actors successfully com-
pleted the try block and may proceed into the continuation.
The civ_token, inspired by Ozone [42], preserves communication integrity in the

presence of out-of-order messages. Each CIV token is a 4-tuple:
CIV = {session_token, metadata, sender, receiver}

The session_token is a UUID generated when the choreography is instantiated (during
Chorex.start). Every instance of a choreography has its own session token. The metadata
field describes the source-code location within the choreography where this message
originated (i.e., the original send ⇝ recv). Crucially, both parties involved in the
message receive equal metadata values, and different send sites lead to different metadata
values. The sender and receiver components are the names of the actors involved. All
together, a CIV token ensures that a message goes only to the intended destination.

4.2 Actors as Server Processes

Chorex projects actors to Elixir GenServer behaviors [3, 13] rather than straight-line
processes. This choice solves the following problems with default Elixir processes:
1. no way to prioritize messages from the Monitor process (Figure 6),
2. no way to supervise for crashes.
GenServers—in contrast to straight-line processes—can be supervised and monitored.
Additionally, they can handle messages that arrive in any order and can give priority
to messages from the Monitor process. GenServers have their own drawbacks as well,
e.g., complicated variable scope, but Chorex works around these problems.

GenServer Primer GenServer (short for “Generic Server”) is an Erlang library that
makes it easy to build processes that manage state and can respond to ad-hoc messages.
Elixir inherits GenServers from Erlang. To behave as a GenServer, a module must define
an init function that returns a value representing the server state, and callbacks to
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defmodule Counter do
use GenServer

def init(start_count), do: {:ok, start_count} # final element is server state
def handle_cast(:increment, count), do: {:noreply, count + 1}
def handle_call(:get_count, sender, count), do: {:reply, count, count} # 2nd element goes to caller

Figure 8 Example GenServer that implements a counter.

handle incoming messages. There are three kinds of callbacks that deal with messages:
handle_call, handle_cast, and handle_info. These callbacks can expect at least a message
and state value as input, and must return a new state value. A handle_call receives a
process ID as well, and must include a reply to this process in its return value.

As an example, the GenServer in Figure 8 implements a counter. The initial state is
the number start_count. One callback, handle_cast, awaits messages with the tag :increment
and a numeric value; it adds the input value to the counter state. Another callback,
handle_call, awaits :get_count messages. It logs information about the request and returns
a 3-tuple with two copies of the state. One copy is a reply to the sender process and
the other copy is the new state (same as before the call). To start an instance of this
module with an initial count of zero, call GenServer.start(Counter, 0).

Multiple processes can interact with a GenServer at the same time. The GenServer
handles each incoming message, one at a time. This behavior enforces linearity, so
that concurrent processes can interact with shared state in a coherent way.

Challenges The key challenge of GenServers as a target for projection is that every
message that an actor can receive must be anticipated with a callback. An actor cannot
be implemented with a single function; it must be split across several functions as
shown in Figure 7. Consequently, variables defined earlier in a choreography must
become part of the GenServer state in order to reach later parts of the choreography.
A second challenge is that actors can no longer use the Elixir call stack to handle
function calls. Chorex must manage its own actor-specific control stacks.

Correct Scope via Live Variable Analysis Below, two actors send a message to Bob:
Alice.one() ~> Bob.x
Carol.two() ~> Bob.y
Bob.(x + y)

Projection for the Bob actor introduces two callbacks, one for each receive. A direct
but incorrect projection would use the variables x and y directly. This is wrong because
x is not in scope for the second callback, which needs to return a sum:
# WRONG projection for Bob
def handle_info({Alice, x}, state), do: ...
def handle_info({Carol, y}, state), do: x + y # WRONG

Chorex builds a correct projection by tracking the set of live variables through a
choreography. At runtime, Chorex stores a map from variable to values in GenServer
state, and reads from the map as needed:
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# CORRECT projection for Bob
def handle_info({Alice, x}, state) do

state = put_in(state.vars[:x], x)
...

def handle_info({Carol, y}, state) do
x = state.vars[:x]
x + y

Determining free variables in Elixir has some subtleties. For example, the match
expression [x, ^y, x] = make_list() contains three variable names, x, y, and x, but binds only
the first one (x). The y is pinned with the ^ prefix, meaning it is a variable reference,
and the second x is a reference to whatever value the first occurrence of x receives
in the match. Chorex reuses Elixir’s tree-walking API to facilitate analysis, but it
implements a custom set of rules to find free variables.

Receives and Function Calls The second challenge of projection to GenServers is that
function calls in a choreography no longer map cleanly to function calls in the Elixir
output. An actor might call a function that receives several messages; each receive
will introduce a new callback. In the example below, the function test_system receives
one message for each of the actors Mike and Joe:
def run() do

Joe.(:begin) ~> Mike.start_message
with Joe.response <- test_system() do

Joe.(String.length(response))

def test_system() do
Joe.("Hello Mike") ~> Mike.("Hello " <> my_name)
Mike.("Hello Joe, you said #{my_name}") ~> Joe.reply
Joe.("Received " <> reply)

To recover typical call/return behavior, each actor tracks a stack of call frames in
the GenServer state. When a callback finishes, the GenServer inspects the top stack
frame to decide where to go next. It then invokes a next callback, and this jump
corresponds to a return in the source language.

When projecting the run function above, Chorex does not know whether the call to
test_system will perform any receives. (Higher-order functions make it impractical to
statically track which functions do receive.) At each function call, Chorex thus creates
a unique token to identify the call site and its continuation. This token is used in two
places: first, it goes onto the control stack in the GenServer state; second, it appears
in the argument specification of the callback that holds the continuation code.

Actor State Each Chorex actor keeps the following state, which gets passed between
every message handler in the GenServer implementation:

a queue of choreography messages to be processed,
a stack of control frames (to recover receives and function calls),
a map of live variables,
the session_token,
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a map representing the network configuration, and
a reference to the implementing module.

Chorex actors also share some functionality via a runtime module. The runtime can:
push new messages on a queue as they arrive, inspect the control stack to determine
which message in the inbox is needed next, and unwind execution stacks.

4.3 Projection via macro expansion

Chorex uses Elixir’s macro system to embed a choreography language. Macros expand
during compilation, which allows Chorex to perform static checks such as sufficient
knowledge-of-choice propagation. Macros are also part of the standard Elixir toolchain,
which makes for a seamless workflow. No extra build steps are needed.

With its macro implementation, Chorex reuses many affordances of the host lan-
guage. Local expressions get lowered as-is, making the entirety of Elixir available.
Macro hygiene means Chorex users do not have to worry about macro implementation
details leaking out, and Chorex itself is, in principle, macro extensible.

Defchor Internals The defchor form is a macro that takes a list of actor names and a
block of choreography code. It projects the choreography body for each of the actors.
Projection takes an actor name and a sequence of expressions and returns three values:
(1) a sequence of expressions, representing the actor’s view of the expressions; (2) a
list of function clauses, which defchor will splice into the GenServer for the actor; and
(3) a list of function specifications, which will be required of actor implementations.
With these pieces, the defchor macro generates a module for each actor that contains
code to realize that actor’s communications as well as a behaviour spec which actor
implementations (Section 3.2) must satisfy.
Elixir AST nodes include metadata about source code, including line and column

numbers. Chorex uses this metadata whenever possible in expanded code to ensure
that error messages get reported in terms of the source language. For example, for
the following faulty code: Alice.one(bad_variable_name) ~> Bob.x macro output causes
the Elixir compiler to report a readable error:
error: undefined variable "bad_variable_name"

Alice.one(bad_variable_name) ~> Bob.x

4.4 Reflections

GenServers as a compilation target enabled flexible, out-of-order and out-of-band
message receives. This critical ability was well worth the pain of having to implement
custom mailboxes, live variable analysis, and execution stacks.

One major issue in Elixir’s macro system is its lack of support for pattern-matching
on quoted syntax. The base language has excellent pattern matching for values [23].
A tool similar to Racket’s syntax-parse [18] would make macros easier to write.

In Choral [29], developers are expected to modify projected code, for example, to
interoperate with legacy interfaces [39]. With two codebases at play, the choreography
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Table 1 Overhead in two realistic programs and three microbenchmark configurations
compared to counterparts with no try/rescue.

try try + rescue try try + rescue
State Machine 1.01 x 1.05 x Flat-10k 1.04 x 4.37 x
Mini BlockChain 12.15 x 4.74 x Nest-1k 1.59 x 1.91 x

Nest-10k 15.82 x 1.93 x

and its projection, a story for round-trip development is important so that that changes
in the projected code can be propagated to the choreography. Chorex (and HasChor
etc. [4]) makes it impractical to edit projected code. This appears to be a step forward,
but more experience applying Chorex to existing projects is needed.

Chorex projects choreographies into onemodule and requires actor implementations
to provide application-specific details in a separate module. This design allows the
reuse of one protocol across several implementations, and gives Chorex a natural way
to reuse Elixir language tooltips.

5 Performance Overhead

Since actors checkpoint their state upon entering a try block and unwind their execution
stack to enter a rescue block, it is important to benchmark the run-time overhead.
We have tested with two realistic case studies of try/rescue, inspired by programs
from Section 2, and several microbenchmark variants. Table 1 lists representative
results. State Machine is based on the TCP choreography. Mini Blockchain computes
hashes in a loop, similar to zero-knowledge challenges. Flat-10k is a microbenchmark
of 10,000 iterations through a recursive function; in each iteration, two actors do
some work in a single try block. Nest-1k and Nest-10k run 1,000 and 10,000 iterations
of a similar recursive function, but with a recursive call in the try block as well.

All experiments ran on a single-user Apple M1 Pro with 32 GB RAM and 10 available
cores, using Chorex 0.8.14, Elixir 1.18.0, and Erlang 27.2. Performance overhead is
minimal for flat loops, but is excessive with nesting. This appears to be due to how
recursively descending into try/rescue blocks forces actors to accumulate recovery states.
Potential ways to reduce overhead are to store diffs of actor states as checkpoints and,
for highly-distributed choreographies, save diffs on each actor’s local node.
Compile times scale linearly with the number of actors in the choreography. A

choreography with 100 actors (already bigger than any practical example we were
able to find) took approximately 11 seconds, and 1000 actors took approximately 2
minutes to compile. Details are in the artifact.

6 Related Work

The design and implementation of choreographic languages has become a lively
research area. Java, Haskell, Racket, Rust, and (now) Elixir all have third-party
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Table 2 Recent advances in choreographic programming. Functions-as-values has seen
wide adoption (Functional column). Other recently-proposed features have yet to
permeate the landscape. Chorex adds error-restarts to the feature space.

Functional Restartable Full OoO Census Poly Agreement-τ
Choret [6] ✓
HasChor [47] ✓
⋆ Chorex ✓ ✓
Choral [14, 29, 42] ✓ ✓
Klor [38] ✓ ✓
MultiChor,ChoRus, ✓ ✓
ChoreoTS [4]

support for choreographies today, and most of these implementations appeared within
the past year [4, 6, 10, 29, 38]. Choral is a notable exception with nearly a decade
of engineering under its belt [28]. A first workshop on choreographies [1] and an
introductory zine [2] appeared last year as well.
As Table 2 outlines, the overall expressiveness of choreographies as a protocol

language is expanding. Functional (or higher-order [15, 32]) choreographies, which
can use functions as first-class values, are standard. Restarts and network changes
are unique to Chorex. Fully out-of-order execution (Full OoO) lets a choreography
reorder code in any way that respects data dependencies. An efficient realization
of (partial) reordering is in the Ozone API [42], which compiles to Choral. Census
polymorphism allows abstraction over the number of participants in a choreography,
analogous to variable-arity functions [20]. MultiChor, ChoRus, and ChoreoTS (which
were introduced simultaneously [4]) are the first languages to support census poly-
morphism. Agreement types in Klor track the participants involved in a subroutine and
thus provide a compositional way to infer knowledge-of-choice annotations. Chorex
provides a modicum of reordering to avoid performance pathologies; messages sent
to an actor arrive as soon as they are ready, instead of queuing. We have no plans
at this time to implement full reordering. The other features in Table 2 are on the
agenda for future work improving Chorex.

An orthogonal dimension is whether to implement choreographies as a standalone
language or as a library. Libraries are simpler to implement and use, but limited in
power. For example, HasChor [47] broadcasts knowledge-of-choice to all participants—
turning every conditional into a choreography-wide sync point—because it cannot
perform a two-pass static analysis (as in [32]). MultiChor and its relatives reduce the
actors in each broadcast through a conclave mechanism. A thesis of Chorex, and of
Choret [6], is that the best implementation of all comes through a meta-programmable
host language such as Racket [19, 24]. Similarly, recent work improves HasChor with
static projection via a Haskell compiler plugin [36].
Theoretical foundations of choreographies have a long history [8, 16, 17, 32, 42,

43]. The Pirouette calculus was the blueprint we followed to start Chorex [32].
Elixir is soon to acquire a full-featured gradual type system based on set-theoretic

types [9]. Release v1.18 [54] infers types from match patterns and function bodies to
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report certain high-confidence warnings. However, users cannot write types and the
type checker assumes the permissive dynamic type by default, limiting the guarantees
that types provide. Extending this type system to gradually check choreographies is
an exciting future direction.

Lastly, we mention areas that have close ties to choreographies. Multiparty session
types [33, 34] and secure multiparty computation (SMC) [44, 50] both coordinate
distributed actors via a global protocol. Session types merely specify required be-
havior, giving developers the freedom to build a conforming implementation. One
notable realization of session types is ElixirST, a type checker for a language of Elixir
processes [26]. Writing programs that conform to session types can be challenging;
techniques for API generation address the implementation burden [11], similar to how
Chorex choreographies generate requirements for actor modules. SMC languages avoid
the conformance question by generating code from a protocol. They are effectively
choreographic languages, but designed and constrained by security considerations.
Restarts have been formally modeled and implemented in the session-types language
Links [25]. Links compiles to custom effect handlers, whereas Chorex cooperates with
Elixir’s built-in exception mechanism. Dezyne brings formal verification to concurrent
industrial processes via a domain-specific language, simulator, and language server
integration [5]. Verification in Chorex is an important next step. There is a long history
of related work on verification for MPI programs to draw from as well [37, 48, 56].

Recent work on hybrid session types shows how to compose a global protocol from
local, application specific protocols [27]. While Chorex allows choreographies to start
other choreographies, and thus supports some composition, it cannot make static
guarantees. Hybrid choreographies may be the way forward. Another closely-related
work is the Corps calculus for hierarchical choreographies [31].

7 Conclusion

The essence of Chorex is a compiler from multiparty programs to stateless, message-
passing processes. This compiler breaks new ground for choreographic programming
with restartable actors, which are enabled through a checkpointing protocol and
cooperative supervisor process, and with its tight integration to the host language,
enabled by metaprogramming. It was not at all clear at the start of this project that
an expressive choreographic language could be implemented as a meta-program, as
opposed to a standalone compiler. The fact that Chorex works for Elixir indicates that
other metaprogrammable languages, from Ruby [35] to Racket [19] to Rust [45],
can follow suit by building a library for supervised processes (Section 3.3) and a
pure-functional server runtime (Section 4.2). Extending the Chorex compiler protocol
to support multiple languages in the same toolchain, with projection to actors written
in different languages, would be a worthy challenge for the future.
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