
FlowFPX: Discovering and Tracking Exceptional Values

The Life-Cycle of a NaN Background
Reliable numerical computations are central to HPC and ML. 
These computations often use IEEE floating-point to represent 
real numbers efficiently. This representation has some quirks 
that can destroy the correctness or the usefulness of a 
computation. FlowFPX is a tool to track the lifetime of NaNs 
(values representing “not-a-number”) in computation.

NaNs arise from nonsensical computations (such as taking the 
square root of a negative number) or unrepresentable 
computations (due to floating-point quirks). NaNs propagate: 
almost all operations with a NaN produce a NaN regardless of 
what the other arguments were.

However, there are times when NaNs do not propagate. We call 
these “kills”, as the NaN disappears, but not before changing 
the computation in potentially fatal ways! For example, 
NaN < 42 returns false, and 1.0NaN produces 1.0.

Ashton Wiersdorf, Taylor Allred, Xinyi Li, Ben Greenman, Ganesh Gopalakrishnan

Example: Killed NaNs

Gen Prop Prop KillNaN 
Born

NaN 
Propagated

NaN 
Propagated

NaN 
Killed

No NaN-check needed here NaN-check needed here!

Further Work

FloatTracker incurs significant run-time costs due to its 
interception of every function call operating on TrackedFloat 
values. We would eventually like to move to a static, ahead-of-
time solution that incurs no run-time overhead. We will 
investigate novel type-systems to track areas where floating-
point exceptions can occur and inject a minimal set of checks to 
ensure safe and sound floating-point calculations.

FlowFPX is just one component of a larger system designed to 
make floating-point computation more robust, easier to debug, 
and more reliable. Our contributions are highlighted in yellow.

Example: Unexplained NaNs
NaNs can sometimes appear in the output of our programs and 
we don’t know where they came from. FlowFPX provides tools to 
discover the source of NaNs.

Methods
Collecting NaN Life-Cycles
FloatTracker is a Julia library that provides a wrapper type floating-point values which emits 
call stacks at interesting points, such as when a NaN flows into an operation but does not flow 
out. FloatTracker makes use of Julia’s type-based dispatch mechanism and metaprogramming 
capabilities to make the TrackedFloat type a drop-in replacement for any Float type.

Making Sense of the Stack Traces
CSTG is a stack trace visualization tool 
that we can use to understand how 
NaNs flow through the computation. 
(Pictured at right) CSTG also allows us 
to diff two stack trace graphs to find 
locations where bugs crop up.

FloatTracker can also inject NaNs to 
examine how resilient programs are 
against improper NaN handling. This 
way, we can test programs for which we 
have no examples of input data that 
produce NaNs, but which may 
encounter NaNs in production.

Image credits: ShallowWaters.jl library
https://milankl.github.io/ShallowWaters.jl/dev/

Background image credits: ShallowWaters.jl repository
https://github.com/milankl/shallowwaters.jl

ShallowWaters.jl is a fluid 
physics simulator. It takes a 
map of a sea floor elevation, 
like the graph shown at left. 
ShallowWaters simulates the 
flow of fluid and produces the 
graph below.

This simulation is resource-
intensive. Several parameters 
let us adjust the precision to 
get faster render times. 
However, some of these 
parameters (e.g. CFL) at 
certain values cause the
computation to crash or produce bad results because of spurious 
NaNs. Debugging is slow and error-prone without better tools 
to detect where the NaNs came from.

Two functions that compute the maximum in a list. The first will 
silently kill NaNs, while the second correctly propagates.

NaN Killer NaN Propagator

Julia’s type-based dispatch in action

Problem 
specifications 

for PDEs, 
Linear 

systems, etc.

Goldfinch
DSL Julia LLVM/PTX SASS + host 

code

Problem 
parameters

FP-Rehab for fixing floating-point issues at multiple levels of problem representation

Matricies
Tensors
LLVM

ETgraphs

Monitors from 
DLS

FlowFPX

E-Graphs for 
LLVM/PTX

Execution on 
CPU/GPU

Type-harden

Test benches 
compiled from DSL

Legend

Context/Domain
Technology
Our Contributions


